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ABSTRACT

A subset S of a real linear space E is said to be m-convex provided m = 2,
there exist more than m points in S, and for each m distinct points of S at least
one of the () segments between these m points is included in S. In E, let xy
denote the segment between two points x and y. For any point xin S c E,
let S, = {y: xy = S}.The kernel of a set § is then defined as {x € S: 5, =S}.
It is shown that the kernel of a set Sis always a subset of the intersection of
all maximal m-convex subsets of S. A sufficient condition is given for the inter-
section of all the maximal m-convex subsets of a set S to be the kernel of S.

Introduction

The convexity of the kernel holds for subsets of any (not necessarily finite
dimensional) linear space over any ordered field. The kernel of a closed set is
closed in any linear topological space. The kernel of a set S has been characterized
as the intersection of all the maximal convex subsets of S [4]. The result obtained
by intersecting all of the maximal starshaped subsets of a compact, simply-
connected set in the plane is a set which is either starshaped or empty [2]. Recently,
it has been shown that the intersection of all the maximal L, subsets of a set S
in a linear topological space is again an L, set [3]. The purpose of this paper is
to establish a similar result for the intersection of maximal m-convex subsets
of a set, and in the process generalize Toranzos’ result.

1. Preliminaries

The results of this paper apply generally to subsets of a linear topological
space E. The segment xy between two points x and y in E is the set of all points
in E of the form ax 4+ (1—a)y, where 0 < « < 1. A set S is said to be m-convex

provided m = 2, there exist more than m points in S, and for each m distinct
300
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in §. An exactly m-convex set is one which is m-convex but not (m —1)-convex.

points of S at least one of the ( ) segments between these m points is included

A set S is said to be m-convex relative to a set T provided that m = 2, there
are more than m points in S, and for each m distinct points x; x,,---,x, in §
there is a segment x;x; determined by two of these points such that the open
segment (x;x;) = x;x;\{x; x;} is a subset of T.

If S< T, then S is said to be strongly convex rel.tive to T if and only if for
each two points x and y in S (xy) © T implies xy < S. Thus, any set is strongly
convex relative to itself while it need not be convex, that is, 2-convex. The con-
vexity of a set implies both strong rel:tive convexity and rel.tive convexity with
respect to any set contzining it. However, a relatively convex subset S even of
a convex set T need not be strongly convex relative to T. For instance, let T be
a square with interior and S be the union of the two diagonals of T. Moreover,
it is not necessarily true that a maximal k-convex subset of an m-convex set T
be strongly convex rel:tive to T. As an illustration, let W be a square with interior
and sides pg, gr, rs, and sp. Let m and n be such that m # g # n, pg < pm,
and rq < rn. The set T, consisting of W together with gm U gn, is 4-convex,
However, the set S, consisting of pm Urn, is a maximal 3-convex subset of T
which is not strongly convex relative to T.

If SSE and xe8, let S, = {yeS:xy<S}. S, is called the x-star of S.
The kernel of a set S, denoted by kerS is defined as{xe S: S, = S}. If SC E
and xe S, let S*={ye S: xy ¢ S}. §* is called the x-antistzr of S. If S is closed
and x e S, then S is relatively open with respect to S, and if S is m-convex,
then S* is (m—1)-convex relative to S.

For convenience, we adopt the terminology that a subset V = {v,,:,0,} of
a set S is visually independent relztive to S if for alli and jsuch that 1 S i< j <,
v; ¢ S. The join of x and Sis the set xS = {ax + (1-)s:0 <« < 1, and se S}.
This set is sometimes referred to as the cone over S with vertex x.

2. Maximal m-convex subsets

The first result together with Zorn’s lemma will be used to establish the exis-
tence of certain maximal m-convex subsets of a given set.

THEOREM 1. The union of a family of m-convex sets which is directed by
< (the union of any two members is contained in a third) is m-convex.
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ProOF. Let F = {C,: a€ A} be such a family and consider B = U {C,:ae 4}.
Select any m points py,---, p,, in B. Suppose p; is in C,;, for 1 £i < m. By
an inductive argument there is a set C, such that C,;, < Cy, for 1 £ i £ m.
Hence, p;, -, Pm are in C,, and since C, is m-convex the p; determine at least
one segment in C,, which will also be a segment in B. Thus, B is m-
convex.

LemMAa. 2 If S is closed and M is a relatively m-convex subset of S, then
the closure of M is m-convex relative to S.

ProoF. Select any m points, x; -+, x,, in cIM, the closure of M, which are
visually independent relative to S. Since S is closed, we may choose neighbor-
hoods U (x,) and Uy(x;) of x; and x; respectively with the property that uv ¢ S
for any ue U, (x,) and ve U(x)). Let U; = ;. U (x). Now from the con-
struction of the U,, if y; is a point in M NU,, then y,,---,y, form a set of m
points in M visually independent relative to S. Contradicting the m-convexity
of M.

THEOREM 3. Suppose S is a set which contains m— 1 visually independent
points, and let T be a subset of S, r-convex with respect to S, where2 <r < m.
Then there exists a set M which is maximal among all relatively m-convex
subsets of S which include T. M is exactly m-convex with respect to S and if

S is closed, M is closed.

Proor. If Tis a relatively r-convex subset of S, it will be a relatively exactly
s-convex subset of S relative to S for some 2 < s < r. Let xy,--+,x,_, be a set
of m— 1 visually independent points in S. Consider the sets Ty = T, Ty = TU {x,},
T, = TU{x, %}, Tuey = TU{x;2 1 = 1,---,m—1}. At least one of these
sets, say T; must be exactly m-convex relative to S, since T, is relatively exactly
s-convex, T, _, is relatively exactly t-convex for some m <t <s+m—1, and
the addition of a point in S to each T; does not increase the order of relatively
exact m-convexity of T; by more than one. By Zorn’s lemma, there is a maximal
subset M of S containing 7, which is m-convex relative to S. But since T is exactly
m-convex relative to S, it contains m—1 points y4,-:+,y,,., Which are visually
independent relative to S. Since M contains yy, -, Ym-1, M itself is exactly
m-convex relative to S. From Lemma 2 we have that if S is closed then M is
closed and m-convex.

COROLLARY 4. If T is a relatively 2-convex subset of an exactly m-convex
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set S, then there exists for each k,2 < k < m, a relatively k-convex maximal
subset of S containing T.

THEOREM 5. If S is a set, then the intersection of any collection of (absolute-
ly) m-convex subsets of S (m fixed, m = 2) which are strongly convex relative
to S is m-convex, provided the intersection contains at least m points.

Proor. Let M = N {S;: ielI}, where each S; is an m-convex subset of S
which is strongly convex relative to S. Choose any m distinct points in M, say
Xy, X,. Note that {x, ---,x,} < S, for all iel. If for some s and ¢, 1 < s,
t<mand uel xx,<8S,, then x,x, S since §,< §. Hence, xx, =S, for
all iel by the strong relative convexity of S. Therefore, x.x, < M. Since S,
is m-convex, it must contain at least one segment x;x; determined by two of the
m points. Hence, M contains a segment determined by two of the given m points,
and thus M is m-convex.

If S is an m-convex set 2 £ k < m, thenits kernel is contained in any max-
imally relatively k-convex subset R of S. For if xe(kerS)\R then {x} UR
is clearly k-convex relative to S and contains R properly, a contradiction of the
maximality of R.

THEOREM 6. If R is any maximal (relatively) m-convex subset of S, then
kerS < R.

Proor. We prove this only for the case of m-convexity; the proof for the
case of relative m-convexity if similar. Let R be a maximal m-convex subset of
S and consider x e (ker S)\R. R is a proper subset of xR and xR is m-convex.
For, if we select any m distinct points p,, -, p,, in xR, there exist points x,, -+, x,,,
in R such that p;e xx,, 1 £ i £ m. Furthermore, thereisansand,1 <s,t < m

such that x.x, is in R, since R is m-convex. Hence, p,p, < conv{x, x,,x.} < xR,
contradicting the maximality of R. Thus, kerS< R.

COROLLARY 7. For any set S, kerS is a subset of the intersection of all the
maximal (relatively) m-convex subsets of S.

THEOREM 8. Suppose S is a set with the property that S* has at least m—1
visually independent points relative to S, for a fixed positive integer m 2 2

and every x € S\ker S. Then ker S is the intersection of all the maximal exactly
m-convex subsets of S.

Proor. Let x€S\ker S. By hypothesis, there exist m—1 points X, -, X1

Vo —

in S* which are visually independent relative to S. The set T= x (kerS) U -
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U x,,_ (kerS) is the union of m—1 convex subsets of S and hence is exactly
m-convex relative to S. By Theorem 3, there exists a maximal m-convex subset
M of § containing T. Now x ¢ M, since x, x,,+*, X, are visually independent
relative to S, hence, visually independent relative to M. Therefore, x cannot
be an element of the intersection of all maximal exactly m-convex subsets of S.
Thus, the intersection of the maximal exactly m-convex subsets of S is a subset
of ker S. Using Coroll.ry 7, the theorem is est.blished.

COROLLARY 9. Suppose S is an m-convex set with the property that, for a
fixed positive integer k,2 < k £ m—1, and for every xe S \ker S, S* is exactly
k-convex relative to S. Then ker S is the intersection of all the maximal k-con-
vex subsets of S.

The four segments pg, qr, rs and st in the form of the letter W provide us
with an example of a 5-convex set S, with the property that {g, r, s} is the inter-
section of all the maximal 4-convex subsets of S and kerS = . Thus, the

plausible conjecture
) kerS= ) M

McES
where the intersection is taken over all the maximal (relatively) m-convex subsets
of S, is false. A more interesting counterexample to (1) is illustrated in Fig. 1.

Fig. 1

The set S is compact, connected and 4-convex. However the kernel of S is not
the intersection of the maximal 3-convex subsets of S. We have ker S=conv{x,y,u},
and the intersection of the maximal 3-convex subsets of S is conv{x,y, z,w}.

Note that S is convex relative to S.

On the positive side, Fig. 2 illustrates an example of a set S in the plane which



Vol. 16, 1973 m-CONVEX SUBSETS 305

satisfies the property required in Theorem 8 for each m = 2; using complex,
notation, S consists of a square B centered at the origin, and the union of the cones
of the points z(n,2j) and z(n,2j + 1) over B, n =1,2 -+, and j = 0,1,2,and 3,
where z(n,2j) = exp(nj/2 —a + a/n — a/n®)i and z(n,2j +1) = exp(nj/2+ a
— a/n + a/n?)i, with a chosen so that z(1,j), j = 0,1,---,7, are the points of
intersection of the sides of B and the unit circle [z| = 1. Here, ker S = B and,
according to Theorem 8, B is obtained by intersecting all maximal, relatively
exactly m-convex subsets of S, for each value of m.

z(1,3) - - 2(1,2)

2(1"4) 7 2(1,‘1)
: : 1
2(1.5) 2(1,0)

T
z{1,6) = . z(1,7)
Fig. 2
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