ON THE INTERSECTION OF MAXIMAL *m*-CONVEX SUBSETS

BY

J. J. TATTERSALL

ABSTRACT

A subset S of a real linear space E is said to be *m*-convex provided $m \ge 2$, there exist more than *m* points in S, and for each *m* distinct points of S at least one of the $\binom{m}{2}$ segments between these *m* points is included in S. In E, let xydenote the segment between two points x and y. For any point x in $S \subset E$, let $S_x = \{y: xy \subset S\}$. The kernel of a set S is then defined as $\{x \in S: S_x = S\}$. It is shown that the kernel of a set S is always a subset of the intersection of all maximal *m*-convex subsets of S. A sufficient condition is given for the intersection of all the maximal *m*-convex subsets of a set S to be the kernel of S.

Introduction

The convexity of the kernel holds for subsets of any (not necessarily finite dimensional) linear space over any ordered field. The kernel of a closed set is closed in any linear topological space. The kernel of a set S has been characterized as the intersection of all the maximal convex subsets of S [4]. The result obtained by intersecting all of the maximal starshaped subsets of a compact, simply-connected set in the plane is a set which is either starshaped or empty [2]. Recently, it has been shown that the intersection of all the maximal L_n subsets of a set S in a linear topological space is again an L_n set [3]. The purpose of this paper is to establish a similar result for the intersection of maximal *m*-convex subsets of a set, and in the process generalize Toranzos' result.

1. Preliminaries

The results of this paper apply generally to subsets of a linear topological space E. The segment xy between two points x and y in E is the set of all points in E of the form $\alpha x + (1-\alpha)y$, where $0 \le \alpha \le 1$. A set S is said to be *m*-convex provided $m \ge 2$, there exist more than m points in S, and for each m distinct

points of S at least one of the $\binom{m}{2}$ segments between these m points is included in S. An exactly m-convex set is one which is m-convex but not (m-1)-convex.

A set S is said to be *m*-convex relative to a set T provided that $m \ge 2$, there are more than *m* points in S, and for each *m* distinct points $x_1 x_2, \dots, x_m$ in S there is a segment $x_i x_j$ determined by two of these points such that the open segment $(x_i x_j) = x_i x_j \{ \{x_i, x_j\} \}$ is a subset of T.

If $S \subseteq T$, then S is said to be strongly convex relative to T if and only if for each two points x and y in $S(xy) \subseteq T$ implies $xy \subseteq S$. Thus, any set is strongly convex relative to itself while it need not be convex, that is, 2-convex. The convexity of a set implies both strong relative convexity and relative convexity with respect to any set containing it. However, a relatively convex subset S even of a convex set T need not be strongly convex relative to T. For instance, let T be a square with interior and S be the union of the two diagonals of T. Moreover, it is not necessarily true that a maximal k-convex subset of an m-convex set T be strongly convex relative to T. As an illustration, let W be a square with interior and sides pq, qr, rs, and sp. Let m and n be such that $m \neq q \neq n$, $pq \subseteq pm$, and $rq \subseteq rn$. The set T, consisting of W together with $qm \cup qn$, is 4-convex. However, the set S, consisting of $pm \cup rn$, is a maximal 3-convex subset of T which is not strongly convex relative to T.

If $S \subseteq E$ and $x \in S$, let $S_x = \{y \in S : xy \subseteq S\}$. S_x is called the x-star of S. The kernel of a set S, denoted by ker S is defined as $\{x \in S : S_x = S\}$. If $S \subseteq E$ and $x \in S$, let $S^x = \{y \in S : xy \notin S\}$. S^x is called the x-antistar of S. If S is closed and $x \in S$, then S^x is relatively open with respect to S, and if S is m-convex, then S^x is (m-1)-convex relative to S.

For convenience, we adopt the terminology that a subset $V = \{v_1, \dots, v_i\}$ of a set S is visually independent relative to S if for all i and j such that $1 \leq i < j \leq t$, $v_i v_j \notin S$. The join of x and S is the set $xS = \{\alpha x + (1-\alpha)s : 0 \leq \alpha \leq 1, \text{ and } s \in S\}$. This set is sometimes referred to as the cone over S with vertex x.

2. Maximal m-convex subsets

The first result together with Zorn's lemma will be used to establish the existence of certain maximal m-convex subsets of a given set.

THEOREM 1. The union of a family of m-convex sets which is directed by \subseteq (the union of any two members is contained in a third) is m-convex.

PROOF. Let $F = \{C_a : a \in A\}$ be such a family and consider $B = \bigcup \{C_a : a \in A\}$. Select any *m* points p_1, \dots, p_m in *B*. Suppose p_i is in $C_{a(i)}$, for $1 \leq i \leq m$. By an inductive argument there is a set C_b such that $C_{a(i)} \subset C_b$, for $1 \leq i \leq m$. Hence, p_1, \dots, p_m are in C_b , and since C_b is *m*-convex the p_i determine at least one segment in C_b , which will also be a segment in *B*. Thus, *B* is *m*convex.

LEMMA. 2 If S is closed and M is a relatively m-convex subset of S, then the closure of M is m-convex relative to S.

PROOF. Select any *m* points, $x_1 \cdots, x_m$ in cl*M*, the closure of *M*, which are visually independent relative to *S*. Since *S* is closed, we may choose neighborhoods $U_j(x_i)$ and $U_i(x_j)$ of x_i and x_j respectively with the property that $uv \notin S$ for any $u \in U_j(x_i)$ and $v \in U_i(x_j)$. Let $U_i = \bigcap_{j \neq i} U_j(x)$. Now from the construction of the U_i , if y_i is a point in $M \cap U_i$, then y_1, \cdots, y_m form a set of *m* points in *M* visually independent relative to *S*. Contradicting the *m*-convexity of *M*.

THEOREM 3. Suppose S is a set which contains m-1 visually independent points, and let T be a subset of S, r-convex with respect to S, where $2 < r \leq m$. Then there exists a set M which is maximal among all relatively m-convex subsets of S which include T. M is exactly m-convex with respect to S and if S is closed, M is closed.

PROOF. If T is a relatively r-convex subset of S, it will be a relatively exactly s-convex subset of S relative to S for some $2 \le s \le r$. Let x_1, \dots, x_{m-1} be a set of m-1 visually independent points in S. Consider the sets $T_0 = T, T_1 = T \cup \{x_1\},$ $T_2 = T \cup \{x_1, x_2\}, \dots, T_{m-1} = T \cup \{x_i: i = 1, \dots, m-1\}$. At least one of these sets, say T_j must be exactly m-convex relative to S, since T_0 is relatively exactly s-convex, T_{m-1} is relatively exactly t-convex for some $m \le t \le s + m - 1$, and the addition of a point in S to each T_i does not increase the order of relatively exact m-convexity of T_i by more than one. By Zorn's lemma, there is a maximal subset M of S containing T_j which is m-convex relative to S. But since T_j is exactly m-convex relative to S, it contains m-1 points y_1, \dots, y_{m-1} , M itself is exactly m-convex relative to S. Since M contains y_1, \dots, y_{m-1} , M itself is exactly m-convex relative to S. From Lemma 2 we have that if S is closed then M is closed and m-convex.

COROLLARY 4. If T is a relatively 2-convex subset of an exactly m-convex

THEOREM 5. If S is a set, then the intersection of any collection of (absolutely) m-convex subsets of S (m fixed, $m \ge 2$) which are strongly convex relative to S is m-convex, provided the intersection contains at least m points.

PROOF. Let $M = \bigcap \{S_i: i \in I\}$, where each S_i is an *m*-convex subset of *S* which is strongly convex relative to *S*. Choose any *m* distinct points in *M*, say x_1, \dots, x_m . Note that $\{x_1, \dots, x_m\} \subset S_i$ for all $i \in I$. If for some *s* and *t*, $1 \leq s$, $t \leq m$ and $u \in I x_s x_t \subset S_u$, then $x_s x_t \subset S$ since $S_u \subset S$. Hence, $x_s x_t \subset S_i$ for all $i \in I$ by the strong relative convexity of *S*. Therefore, $x_s x_t \subset M$. Since S_u is *m*-convex, it must contain at least one segment $x_i x_j$ determined by two of the *m* points. Hence, *M* contains a segment determined by two of the given *m* points, and thus *M* is *m*-convex.

If S is an *m*-convex set $2 \le k \le m$, then its kernel is contained in any maximally relatively k-convex subset R of S. For if $x \in (\ker S) \setminus R$ then $\{x\} \cup R$ is clearly k-convex relative to S and contains R properly, a contradiction of the maximality of R.

THEOREM 6. If R is any maximal (relatively) m-convex subset of S, then ker $S \subseteq R$.

PROOF. We prove this only for the case of *m*-convexity; the proof for the case of relative *m*-convexity if similar. Let *R* be a maximal *m*-convex subset of *S* and consider $x \in (\ker S) \setminus R$. *R* is a proper subset of *xR* and *xR* is *m*-convex. For, if we select any *m* distinct points p_1, \dots, p_m in *xR*, there exist points x_1, \dots, x_m in *R* such that $p_i \in xx_i$, $1 \le i \le m$. Furthermore, there is an *s* and *t*, $1 \le s$, $t \le m$ such that $x_s x_t$ is in *R*, since *R* is *m*-convex. Hence, $p_s p_t \subset \operatorname{conv}\{x, x_s, x_i\} \subset xR$, contradicting the maximality of *R*. Thus, ker $S \subseteq R$.

COROLLARY 7. For any set S, ker S is a subset of the intersection of all the maximal (relatively) m-convex subsets of S.

THEOREM 8. Suppose S is a set with the property that S^x has at least m-1 visually independent points relative to S, for a fixed positive integer $m \ge 2$ and every $x \in S \setminus \ker S$. Then ker S is the intersection of all the maximal exactly m-convex subsets of S.

PROOF. Let $x \in S \setminus \ker S$. By hypothesis, there exist m-1 points x_1, \dots, x_{m-1} in S^x which are visually independent relative to S. The set $T = x_1(\ker S) \cup \dots$ $\bigcup x_{m-1}(\ker S)$ is the union of m-1 convex subsets of S and hence is exactly *m*-convex relative to S. By Theorem 3, there exists a maximal *m*-convex subset M of S containing T. Now $x \notin M$, since x, x_1, \dots, x_{m-1} are visually independent relative to S, hence, visually independent relative to M. Therefore, x cannot be an element of the intersection of all maximal exactly *m*-convex subsets of S. Thus, the intersection of the maximal exactly *m*-convex subsets of S is a subset of ker S. Using Coroll_ry 7, the theorem is est_blished.

COROLLARY 9. Suppose S is an m-convex set with the property that, for a fixed positive integer $k, 2 \leq k \leq m-1$, and for every $x \in S \setminus \ker S$, S^x is exactly k-convex relative to S. Then ker S is the intersection of all the maximal k-convex subsets of S.

The four segments pq, qr, rs and st in the form of the letter W provide us with an example of a 5-convex set S, with the property that $\{q, r, s\}$ is the intersection of all the maximal 4-convex subsets of S and ker $S = \emptyset$. Thus, the plausible conjecture

$$\ker S = \bigcap_{M \in S} M$$

where the intersection is taken over all the maximal (relatively) *m*-convex subsets of S, is false. A more interesting counterexample to (1) is illustrated in Fig. 1.

The set S is compact, connected and 4-convex. However the kernel of S is not the intersection of the maximal 3-convex subsets of S. We have ker $S = conv\{x, y, u\}$, and the intersection of the maximal 3-convex subsets of S is $conv\{x, y, z, w\}$. Note that S^{v} is convex relative to S.

On the positive side, Fig. 2 illustrates an example of a set S in the plane which

satisfies the property required in Theorem 8 for each $m \ge 2$; using complex, notation, S consists of a square B centered at the origin, and the union of the cones of the points z(n, 2j) and z(n, 2j + 1) over B, n = 1, 2, ..., and j = 0, 1, 2, and 3, where $z(n, 2j) = \exp(\pi j/2 - a + a/n - a/n^2)i$ and $z(n, 2j + 1) = \exp(\pi j/2 + a - a/n + a/n^2)i$, with a chosen so that z(1, j), j = 0, 1, ..., 7, are the points of intersection of the sides of B and the unit circle |z| = 1. Here, ker S = B and, according to Theorem 8, B is obtained by intersecting all maximal, relatively exactly m-convex subsets of S, for each value of m.

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to the referee for his valuable comments.

References

1. D. C. Kay and M. D. Guay, Convexity and a certain property P_m , Israel J. Math. 8 (1970), 39-52.

2. W. R. Hare and J. W. Kenelly, Intersections of maximal starshaped sets, Proc. Amer. Math. Soc. 19 (1968), 1299-1302.

3. A. G. Sparks, Intersections of maximal L_n sets, Proc. Amer. Math. Soc 24 (1970), 245-250.

4. F. A. Toranzos, Radial functions of convex and starshaped bodies, Amer. Math. Monthly 74 (1967), 278-280.

5. J. J. Tattersall. A Generalization of Convexity, Ph.D. thesis, Oklahoma University (1971).

6. F. A. Valentine, Convex Sets, McGraw-Hill Book, Co., New York, 1964.

MATHEMATICS DEPARTMENT

PROVIDENCE COLLEGE PROVIDENCE, RHODE ISLAND, U.S.A.