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ABSTRACT 

A subset S of a real linear space E is said to be m-convex provided m ~ 2, 
there exist more than m points in S, and for each m distinct points of S at least 
one of the ('~) segments between these m points is included in S. In E, let xy  

denote the segment between two points x and y. For any point x in S c E, 
let S x = {y: xy  ~ S } .  The kernel of a set S is then defined as {x ~ S: S x = S } .  
It is shown that the kernel of a set S is always a subset of the intersection of 
all maximal m-convex subsets ofS.  A sufficient condition is given for the inter- 
section of all the maximal m-convex subsets of a set S to be the kernel of S. 

Introduction 

The convexity of the kernel holds for subsets of any (not necessarily finite 

dimensional) linear space over any ordered field. The kernel of a closed set is 

closed in any linear topological space. The kernel of a set S has been characterized 

as the intersection of  all the maximal convex subsets of  S [-4]. The result obtained 

by intersecting all of  the maximal starshaped subsets of  a compact, simply- 

connected set in the plane is a set which is either starshaped or empty I-2]. Recently, 

it has been shown that the intersection of  all the maximal L, subsets of  a set S 

in a linear topological space is again an L, set [3]. The purpose of this paper is 

to establish a similar result for the intersection of maximal m-convex subsets 

of  a set, and in the process generalize Toranzos'  result. 

1. Preliminaries 

The results of this paper apply generally to subsets of a linear topological 

space E.  The segment xy  between two points x and y in E is the set of all points 

in E of the form ctx + ( 1 - c 0 y ,  where 0 _< cz < 1. A set S is said to be m-convex 

provided m >= 2, there exist more than m points in S,  and for each m distinct 
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points of S at least one of the ( 2 )  segments between these m points is included 

in S. An exactly m-convex set is one which is m-convex but not (m-1)-convex.  

A set S is said to be m-convex relative to a set T provided that m _> 2, there 

are more than m points in S,  and for each m distinct points x~ x2 , . . . , x  m in S 

there is a segment x~xj determined by two of these points such that the open 

segment (x~xj) = x~xj I{xi, x j} is a subset of  T. 

If  S c T, then S is said to be strongly convex reLtive to T if and only if for 

each two points x and y in S (xy) c T implies x y  c S .  Thus, any set is strongly 

convex relative to itself while it need not be convex, that is, 2-convex. The con- 

vexity of a set implies both strong rel=tive convexity and rel=tive convexity with 

respect to any set containing it. However, a relatively convex subset S even of 

a convex set T need not be strongly convex relative to T. For instance, let T be 

a square with interior and S be the union of the two diagonals of T. Moreover, 

it is not necessarily true that a maximal k-convex subset of  an m-convex set T 

be strongly convex rel:tive to T. As an illustration, let W be a square with interior 

and sides pq, qr, rs, and sp. Let m and n be such that m ~ q r n,  pq c p m ,  

and rq c rn.  The set T, consisting of  W together with qm t .)qn,  is 4-convex. 

However, the set S,  consisting of  pm w rn, is a maximal 3-convex subset of  T 

which is not strongly convex relative to T. 

If S e E  and x ~ S ,  let S ~ =  { y s S : x y c S } .  S ~ i s  called the x-star of S.  

The kernel of  a set S,  denoted by kerS is defined a s { x s S :  S~ = S}. If S c E 

and x ~ S,  let S~= {y ~ S: xy  r S}.  S ~ is called the x-antistzr of S.  If  S is closed 

and x ~ S,  then S x is relatively open with respect to S,  and if S is m-convex, 

then S x is (m-1)-convex relative to S.  

For  convenience, we adopt the terminology that a subset V = {vl, ..., v,} of 

a set S is visually independent relative to S if for all i a n d j  such that 1 < i < j  < t, 

viv j r S .  The join o f x  and S is the set x S  = {~x + (1 -or)s: 0 < a _< 1, and s e S}. 

This set is sometimes referred to as the cone over S with vertex x.  

2. Maximal m-convex subsets 

The first result together with Zorn's lemma will be used to establish the exis- 

tence of certain maximal m-convex subsets of a given set. 

TnEO1~EM 1. The union o f  a f a m i l y  o f  m-convex sets which is directed by 

c (the union o f  any two members is contained in a third) is m-convex. 
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PROOF. Let F = {Co: a e A) be such a family and consider B = U {C~: a e A). 

Select any m points Pl , ' " ,Pm in B.  Suppose p~ is in C~(1), for 1 _ i _ m.  By 

an inductive argument there is a set Cb such that  C~( o c Cb, for 1 _< i _< m.  

Hence, P l , ' " ,Pm are in Cb, and since Cb is m-convex the Pi determine at least 

one segment in Cb, which will also be a segment in B.  Thus, B is m- 

convex. 

LEMMA. 2 I f  S is closed and M is a relatively m-convex subset o f  S ,  then 

the closure of  M is m-convex relative to S .  

PROOF. Select any m points, x I . . . ,x , ,  in c l M ,  the closure of  M ,  which are 

visually independent relative to S.  Since S is closed, we may choose neighbor- 

hoods Uj(x,) and Ui(xj) of x i and xj respectively with the property that uv r S 

for any u ~ U~(x,) and v~ U,(xj).  Let U i = N j , i U j ( x ) .  Now from the con- 

struction of the U,, if Yi is a point in M t~ U(, then y~," . , ym form a set of  m 

points in M visually independent relative to S.  Contradicting the m-convexity 

of  M .  

THEOREM 3. Suppose S is a set which contains m -  1 visually independent 

points, and let T be a subset o f  S ,  r-convex with respect to S ,  where 2 < r < m . 

Then there exists a set M which is maximal  among all relatively m-convex 

subsets o f  S which include T. M is exactly m-convex with respect to S and i f  

S is closed, M is closed. 

PROOF. I f  T is a relatively r-convex subset of  S,  it will be a relatively exactly 

s-convex subset of  S relative to S for some 2 < s < r .  Let xa , ' " , xm_  ~ be a set 

of  m - 1 visually independent points in S. Consider the sets To = T, T~ = T o  {xt} , 

T 2 = T U ( x l , x 2 } , " ' , T m _ t  = T U  {x,: i - -  1 , . . . , m - I } .  At least one of these 

sets, say T~ must be exactly m-convex relative to S,  since T o is relatively exactly 

s-convex, Tin- ~ is relatively exactly t-convex for some m < t < s + m - 1, and 

the addition of a point in S to each T~ does not increase the order of  relatively 

exact m-convexity of T~ by more than one. By Zorn 's  lemma, there is a maximal 

subset M of S containing Tj which is m-convex relative to S. But since Tj is exactly 

m-convex relative to S,  it contains m - 1  points Y t , ' " , Y m - t  which are visually 

independent relative to S.  Since M contains Y t , ' " , Y m - t ,  M itself is exactly 

m-convex relative to S. From Lemma 2 we have that if S is closed then M is 

closed and m-convex. 

COROLLARY 4. If T is a relatively 2-convex subset o f  an exactly m-convex 
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set S ,  then there exists for each k ,  2 <_ k <_ m,  a relatively k-convex maximal 

subset of  S containing T. 

THEOREM 5. I f  S is a set, then the intersection of any collection of(absolute- 

ly) m-convex subsets o r s  (m fixed, m >-_ 2) which are strongly convex relative 

to S is m-convex, provided the intersection contains at least m points. 

PROOF. Let M = n {Si: i ~ I ) ,  where each St is an m-convex subset of S 

which is strongly convex relative to S.  Choose any m distinct points in M,  say 

x f , . . . , x  m. Note that {xi -.-,xm} c S i for all i E l .  If  for some s and t,  1 < s, 

t < m and u~_I x ~ x t c S , ,  then x~x t C S  since S, c S .  Hence, x~x z C S ,  for 

all i e  I by the strong relative convexity of S.  Therefore, xsxz c M.  Since S, 

is m-convex, it must contain at least one segment x~xj determined by two of the 

m points. Hence, M contains a segment determined by two of the given m points, 

and thus M is m-convex. 

If  S is an m-convex set 2 __< k __< m, then its kernel is contained in any max- 

imally relatively k-convex subset R of S.  For if x ~ (ker S) \R then {x} W R 

is clearly k-convex relative to S and contains R properly, a contradiction of the 

maximality of R.  

THEOREM 6. I f  R is any maximal (relatively) m-convex subset of  S ,  then 

ker S c R.  

PROOF. We prove this only for the case of m-convexity; the proof  for the 

case of relative m-convexity if similar. Let R be a maximal m-convex subset of  

S and consider x ~ (ker S) \R .  R is a proper subset of xR and xR is m-convex. 

For, if we select any m distinct points P l , ' " ,  Pm in xR ,  there exist points x l , . . . ,  x m 

in R such that p~ ~ xx, ,  1 <_ i <_ m.  Furthermore, there is an s and t,  1 <__ s, t __< m 

such that x~xt is in R, since R is m-convex. Hence, psptc  conv{x,x~,x:} c x R ,  

contradicting the maximality of R. Thus, ker S c R.  

COROLLARY 7. For any set S ,  kerS is a subset of  the intersection of all the 

maximal (relatively) m-convex subsets of  S .  

THEOREM 8. Suppose S is a set with the property that S x has at least m - 1  

visually independent points relative to S ,  for a fixed positive integer m > 2 

and every x ~ S \ke r  S.  Then kerS is the intersection of all the maximal exactly 

m-convex subsets of  S .  

PROOF. Let x ~ S / ker S.  By hypothesis, there exist m -  1 points x l, ..., x,,_ 1 

in S x which are visually independent relative to S.  The set T =  x t ( k e r S ) w - . .  
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Ux,~_l(kerS ) is the union of m - 1  convex subsets of S and hence is exactly 

m-convex relative to S. By Theorem 3, there exists a maximal m-convex subset 

M of S containing T. Now x ~ M,  since x, x 1, ..., x m_ 1 are visually independent 

relative to S,  hence, visually independent relative to M.  Therefore, x cannot 

be an element of the intersection of all maximal exactly m-convex subsets of S. 

Thus, the intersection of the maximal exactly m-convex subsets of S is a subset 

of ker S. Using Coroll..ry 7, the theorem is est.blished. 

COROLLARY 9. Suppose S is an m-convex set with the property  that, f o r  a 

f i xed  positive integer k ,  2 < k < m -  1, and f o r  every x ~ S \ ker S ,  S x is exact ly  

k-convex relative to S .  Then  kerS is the intersection o f  all the m a x i m a l  k-con- 

vex subsets o f  S .  

The four segments pq, qr, rs and st in the form of the letter W provide us 

with an example of a 5-convex set S, with the property that {q, r, s} is the inter- 

section of all the maximal 4-convex subsets of S and kerS = ~ .  Thus, the 

plausible conjecture 

(1) k e r S =  N M 
M ~ S  

where the intersection is taken over all the maximal (relatively) m-convex subsets 

of S, is false. A more interesting counterexample to (1) is illustrated in Fig. 1. 
u 

x y 

Fig. 1 

The set S is compact, connected and 4-convex. However the kernel of S is not 

the intersection of the maximal 3-convex subsets of S. We have ker S =  conv{x,y,u}, 

and the intersection of the maximal 3-convex subsets of S is conv{x,y, z,w}. 

Note that S v is convex relative to S. 

On tbe positive side, Fig. 2 illustrates an example of a set S in the plane which 
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satisfies the p roper ty  required in Theorem 8 for  each m > 2; using complex,  

nota t ion,  S consists o f  a square B centered a t  the origin, and the union of  the cones 

of  the points  z (n ,2 j )  and z (n ,2 j  + 1) over  B, n = 1 , 2  ..., a n d j  = 0 ,1 ,2 ,  and 3, 

where z(n, 2j) = exp(rcj/2 - a + a/n - a/n2)i and z(n, 2j + 1) = exp(rrj/2 + a 

- a/n + a/n2)i ,  with a chosen so that  z (1 , j ) ,  j = 0, 1 , . . . , 7 ,  are the points  o f  

intersection of  the sides of  B and the unit  circle [ z I = 1. Here,  ker S = B and, 

according to Theorem 8, B is obta ined  by intersecting all maximal ,  relatively 

exactly m-convex subsets o f  S ,  for  each value of  m .  

z(t,3) --- 

z (I,4) 

"'" z(I,2) 

Fig. 2 

z(1,1) 

z(1,O) 
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